Learnings from Twenty Years of Canadian Track-Caused Derailment Investigations

Michael Roney, Int PE, Brent Laing, P.Eng., Iron Moustache Consulting

HEAVY HAUL SEMINAR · JUNE 23 - 24

WRI 2022

Learnings from Twenty Years

> Agenda

- The TSB of Canada
- Safety Occurrences
- > Broken Rail
- > Wide Gauge
- Track Buckles
- > Weather, Spring Thaw, Training
- Increased Tonnage Risk
- Progress Made and Outstanding Opportunities

The Transportation Safety Board of Canada

- The Transportation Safety Board of Canada is an independent federal agency that advances transportation safety by investigating occurrences in the air, marine, pipeline and rail modes of transportation.
- TSB selects and attends a sample of concerning train derailments to establish cause.
- Publicly available reports are generated by the TSB. These reports identify the factors that caused or contributed to the occurrence, and the safety deficiencies that needed to be addressed.

The Transportation Safety Board of Canada

- The TSB follows up on recommendations designed to eliminate or reduce safety deficiencies found during the investigations.
- The TSB does not have the mandate or authority to implement specific corrective actions. Such actions are taken by regulatory agencies, manufactures and operating companies.

Safety Occurrences

- 327 derailments
 investigated by the
 TSB between 2000
 and 2020
- 90 derailments where a track issue was determined to be the primary cause.

Safety Occurrences

- Majority of the derailments attributed to three causes;
 - Broken rail, joint bar, weld
 - ➢ Wide Gauge
 - Track Buckle

Broken Rail

- 35 derailments investigated with broken rail as a primary cause.
- Reports suggest that 21 derailments resulted from undetected internal flaws.
- A majority of these were prior to 2015.

Broken Rail

- Broken rails have been a focus of the TSB since 1994 when "A Special Study of Main Track Derailments" was released. The study concluded;
 - Main track derailments had decreased by a factor of 3 between 1980 and 1988 while the number remained the same between 1988-1993.

Broken Rail

- Reasons for the decline included;
 - Improved Installation and repair of CWR.
 - Increased use of automatic rail defect detection and track geometry measurement technology.
- Further technology advancements in internal rail defect detection was expected to reduce the number of broken rails.

Wide Gauge

- Within the TSB data, 13 derailments with wide gauge as primary cause.
- Of these, 8 reports show poor tie condition as a root cause, while 5 show inadequate or poor inspection practices as a root cause.
- 85% of wide gauge derailments occurred in 2012 or earlier.

Wide Gauge

- The 2012 revision of Transport Canada's "Rules Respecting Track Safety", had an impact on the number of wide gauge derailments.
- That revision required heavy or light geometry testing which resulted in identification of problematic gauge areas.

- TSB data shows 11
 derailments with a track
 buckle as a primary
 cause.
- 7 of these derailments had track work being performed or just performed prior to the derailment.
- Insufficient or inadequate anchors and poor tie condition were also present.

Track Buckles

Track Buckles

- The TSB issued Rail Safety Recommendation R93-03 in February 2003 concerning destressing of CWR.
- In 2011 Transport
 Canada confirmed to the
 TSB that both CP and CN
 had established
 standards for destressing
 of CWR.

Rail Rollover

- 6 derailments were investigated by TSB that had rail rollover as primary cause between 2000 and 2020.
- Poor tie condition and train handling was noted in 3 derailments, high L/V in 2 derailments, binding truck in 1 derailment.
- Truck performance detectors have been installed on CN and CP
- Both railways have evaluated actual speeds on curves to reset superelevation to match speeds at which a majority of trains operate.
- > Active rail profile grinding programs help manage

Geotechnical

Five grade failures and three slides were investigated in the twenty year period.

Geotechnical

- In 2003, Transport Canada along with CN and CP created the Railway Ground Hazard Research program. This program is a collaborative effort to develop and evaluate scientific and technical solutions to help railway manage the risks associated with ground hazards.
- It is fairly certain without this work, the outcome severity of ground hazard events would have been significantly worse.

Weather

There are seven derailment reports that show the derailment occurred when low temperatures were present.

Not very enlightening

Weather

The data shows more derailments occurred between 0C and +10C as compared to more extreme temperatures.

Weather

- Similar to hot and cold temperature track patrols, both CN and CP have put in place procedures for inspections during spring thaw and high water events.
 - CN Spring Readiness Inspections
 - CP Red Book of Track and Structures

Training

- TSB expressly states that it is not the function of the Board to assign fault. The reports are silent on a particular inspector's ability.
- A review of the 90 track caused derailments suggests that training was a root cause in 12.
- TSB reports show subsequent actions by the railway in 5 derailments resulted in additional or new training.

HEAVY HAUL SEMINAR · JUNE 23 - 24

WRI 2022

Increased Tonnage Risk

- In 2006, TSB undertook a Safety Issue Investigation (SIIR05) of broken rails during the winter of 2003-2004. TSB felt there was a relationship between the occurrence of rail defects and the level of bulk traffic. TSB also commented on the sufficiency of the RRTS to consider the effects of overall increased traffic.
- Subsequently there were two revisions to the RRTS, in 2008 and then again in 2012. The 2012 version incorporated line tonnage as a consideration for inspection frequency.

WRI 2022

Increased Tonnage Risk

 A review of the 90 TSB reports suggest that 11 derailments may have been mitigated by additional visual inspections triggered by line tonnage increases. Of note, 8 of these derailments occurred prior to the last revision of the RRTS in May 2012.

Signs of Progress

- Tighter rail detection intervals, in particular when facilitated with non-stop ultrasonic rail flaw detection, have improved internal rail defect detection.
- Track geometry inspection frequencies, in particular when facilitated by autonomous track geometry cars, have reduced mainline track geometry related incidents.
- Gauge restraint measurement systems have enabled better targeting of tie clusters that can lead to wide gauge.

HEAVY HAUL SEMINAR · JUNE 23 - 24

WRI 2022

Signs of Progress

- Light geometry inspection vehicles have extended derailment protection into lower tonnage lines, particularly in reducing wide gauge incidents.
- There is an increased understanding of the importance of rail destressing.
- Hot and cold weather protocols have reduced incidents related to weather extremes.

Outstanding Opportunities

- Can disturbed track risks be better identified in advance of the work?
- Are targeted rail neutral temperatures striking the right balance between the frequency and consequences of track buckles vs. broken rails?
- Can improved understanding of geotechnical and water management hazards outpace increased extreme weather occurrences?

HEAVY HAUL SEMINAR · JUNE 23 - 24

WRI 2022

25

Outstanding Opportunities

- Is mentoring and quality control of manual visual inspections more effective than training?
- Should inspections be more frequent when tonnage increases rapidly on jointed track?
- Can combination track geometry defects be better defined?
- Can the risk of rolling contact fatigue manifestations be identified better?

Some Opportunities Are Incorporated into the 27 2022 Version of Transport Canada's *Rules Respecting Track Safety*

- Defines maximum time intervals between rail flaw detection tests by tonnage and track class
- Defines track geometry test cycles for light and heavy track geometry vehicles.
- Requires auditing of safety-critical track inspection and maintenance activities.
- Requires professional engineer sign off of CWR management plans.

Some Opportunities Are Incorporated into the 2022 Version of Transport Canada's Rules Respecting Track Safety

- Requires cold weather speed restriction protocols on key routes.
- Requires defined procedures for dealing with the consequences of rolling contact fatigue.
- Requires combination defects to be defined for lines carrying tank cars and covered hoppers.

HEAVY HAUL SEMINAR · JUNE 23 - 24

WRI 2022

Future State?

- Better integration of automated inspections and manual visual validation and follow-up, in place of bi-weekly visual inspections.
- Inspection regime tailored to the risk profile of the combination of track condition, inspection capabilities and traffic mix.
- > Continuous lowering of the vehicle/track interaction stress state.
- Escalation of maintenance and renewal action based upon predictive algorithms.

